如何证明奇阶斜对称行列式等于零?
展开全部
如下:
每一行提出-1,有一个(-1)^n=-1,n为奇数,再转置,记原行列式为A,转置的行列式为A'。
A=(-1)^n*A'=-A'=-A。
所以A=0。
因为行列式以主对角线为《对称轴》绝对值相等符号相反,所以提出各行的负一后,行列式外存在因数负一(因为奇数阶,会提出奇数个负一。)然后把行列式【转置】即和原行列式相同!
介绍
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询