已知f(x)=a+1/(2^x-1)为奇函数,求常数a的值及函数f(x)的值域

 我来答
新科技17
2022-08-27 · TA获得超过5905个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75万
展开全部
f(x)为奇函数,f(-x)=-f(x)
f(x)+f(-x)
=a+1/(2^x-1)+a+1/[2^(-x)-1]
=2a+1/(2^x-1)+1/[2^(-x)-1]
={2^x-1+2^(-x)-1+2a(2^x-1)[2^(-x)-1]}/{(2^x-1)*[2^(-x)-1]}
={[2^x+2^(-x)]*(1-2a)+4a-2}/{(2^x-1)*[2^(-x)-1]}
={[2^x+2^(-x)]*(1-2a)-2(1-2a)}/{(2^x-1)*[2^(-x)-1]}
=0
显然,1-2a=0,a=1/2
f(x)=1/2+1/(2^x-1)
2^x>0
2^x-1>-1
1/(2^x-1)∈(-∞,-1)∪(0,+∞)
值域:(-∞,-1/2)∪(1/2,+∞)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式