人教版五年级上册数学《梯形的面积》教案

 我来答
爱学习的小雅2333
2023-01-01 · TA获得超过284个赞
知道小有建树答主
回答量:965
采纳率:100%
帮助的人:83.8万
展开全部

  《梯形的面积》教案(一)

  教学目标

  1.通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。

  2.能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  教学重难点

  教学重点:探索并掌握梯形面积计算公式。

  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。

  教学过程

  一、复习引入,知识铺垫

  计算下面各图形的面积:

  全班核对答案。

  教师:平行四边形、三角形的面积计算公式分别是什么?

  教师:它们之间有什么联系呢?

  因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。

  【设计意图】通过复习平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。

  二、探究梯形面积的计算公式

  1.提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  教师:你能用学过的方法推导出梯形的面积计算公式吗?

  2.动手操作。

  (1)选择合适的材料,进行操作。(同桌合作)

  (2)反馈交流。

  让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。

  预设:

  ① 数方格;

  ② 拼摆,转化成平行四边形;

  ③ 割,转化成两个三角形;

  ④ 割,转化成一个平行四边形和一个三角形;

  ⑤ 割,转化成长方形和两个三角形;

  ⑥ 割补法,转化成平行四边形。

  【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。

  3.公式推导。

  (1)教师:

  方法①的数方格的方法中渗透着割补法的思想,

  方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。

  先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?

  学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。

  学生边说,教师边课件演示。

  逐步完成板书:

  教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。

  (2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?

  学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。

  学生边说,教师边板书演示。

  教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底, 表示梯形的高。

  教师:这与前面推导出来的梯形面积计算公式是一样的。

  (3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。

  学生边说,教师边板书演示。

  其中的计算过程稍复杂,可配合教师讲解完成。

  教师:这和前面推导出来的结论是一样的。

  (4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?

  学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。

  学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。

  教师边板书演示。

  教师:接下来的推导过程和方法④是一样的。

  (5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。

  教师课件演示。

  教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)

  【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。

  三、学以致用

  1.出示教材第96页例3。

  例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2.练习,出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3.求面积,只列式不计算?

  4. 求出这条水渠的横截面?

  5.有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?

  6.判断:

  1.两个面积相等的梯形可以拼成一个平行四

  边形( )。

  2.梯形面积是三角形面积的2倍( )。

  3.一个梯形有无数条高( )。

  4.如果梯形的面积是12平方厘米,两个完全一样的

  梯形拼成的平行四边形的面积是6平方厘米。( )

  5.一个梯形上下底的和是20米,高是8米,这个梯

  形的面积是80平方米。( )。

  【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。

  四、回顾反思

  教师:回顾本节课所学的内容,你最大的收获是什么?

  【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。

  五、布置作业

  完成教材第97页第1题到第5题。

  《梯形的面积》教案(二)

  教学目标

  教学目标:

  1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。

  2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。

  3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。

  4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

  教学重难点

  教学重点:理解并掌握梯形面积公式,会计算梯形的面积。

  教学难点:自主探究梯形面积公式。

  教学过程

  课前准备:谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。

  我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。

  一、创设情境,激发兴趣。

  (出示情境图)。

  谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?

  生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。

  师:根据发现,你能提出什么数学问题?

  学生观察情境图,提出问题。

  生:1号甲鱼池的面积有多大?

  师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?

  生:1号甲鱼池能放养多少甲鱼苗?

  二、自主探究梯形的面积计算方法。

  1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?

  生:梯形。

  师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。

  教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。

  2.小组讨论交流,教师巡视了解。

  3.展示、汇报交流。

  师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。

  生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。

  师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?

  师:谁有不同的方法?

  生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。

  师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?

  生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:这个同学说的太好了。大家认为这个方法好不好?

  这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢

  生:平行四边形的底,平行四边形的高。

  师:平行四边形的面积等于底乘高再除以2就是梯形的面积。

  师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?

  师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。

  师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?

  生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。

  师:这个方法是不是所有的两个完全一样的梯形都可以用。

  生:是两个直角梯形。

  师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)

  第一种是把梯形分割成一个三角形和一个平行四边形;

  第二种是把梯形分割成两个三角形;

  第三种把两个完全一样的梯形拼成了一个平行四边形。

  表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。

  我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。

  师:大家先来猜想。你认为梯形的面积可能与梯形的什么条件有关系?

  生:上底和下底,高

  生:与腰有关。

  师:梯形的面积到底与它们有什么关系呢?你们想不想研究?

  三、探究操作,推导出梯形面积公式:

  (一)出示问题,明确目标

  我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。

  (点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。

  师板书:两个完全一样的梯形拼成平行四边形

  梯形的面积=拼成平行四边形面积÷2

  =底×高÷2。

  拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?

  师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。

  (二)自主探究 合作学习

  小组内讨论交流。

  学生分组动手操作,教师巡视指导。

  教师参与到每个小组中进行讨论和指导,以便发现和收集信息。

  (三)成果交流,质疑解难

  1.全班展示回报:

  师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。

  生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。

  师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?

  师:你们也是这样想的吗?哪个小组再来说说你们的做法?

  3. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)

  梯形面积=平行四边形面积÷2

  梯形面积=底×高÷2

  师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2

  师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2

  2 、师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。

  板书面积公式:梯形的面积=(上底+下底)×高÷2。

  提问:(上底+下底)×高算的是什么?为何要除以2?。

  4.学习字母表达式:

  谈话:谁能用字母表示?说说每个字母分别表示什么?

  师:S=( a+ b ) ×h ÷2(板书)

  四、运用知识,解决情景问题。

  师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)

  请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。

  四、随堂检测,巩固目标。

  师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。

  挑战自我:

  一、判断

  1、两个梯形就可以拼成平行四边形。 ( )

  2、梯形的面积一定比平行四边形的面积小。( )

  3、在下图中平行四边形的面积是梯形面积的2倍。 ( )

  师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?

  二、(挑战自我)

  解决问题:

  1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米, 这个梯形台的平面是多少平方米?

  2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?

  3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?

  师:显示我们聪明才智的机会到了,请同学们大显身手。

  4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。

  学生独立练习,全班交流。

  课后小结

  课堂小结:

  同学们,这节课你们都有哪些收获?还有哪些不懂的地方?

  课后习题

  作业布置:

  学校门前有一条水沟,横截面是梯形。沟口宽0.9米,沟底宽0.7米,沟深0.5米.它的横截面的面积是多少平方米?

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式