高中数列已知a1=1,a(n+1)=3an+n²,求an
第一题:已知a1=1,a(n+1)=3an+n的平方,求an。第2题an的平方=a*a(n+1),其中a1=1,an>0,a>0,求an。...
第一题:已知a1=1,a(n+1)=3an+n的平方,求an。第2题an的平方=a*a(n+1),其中a1=1,an>0,a>0,求an。
展开
1个回答
展开全部
第一题:由a1=1,a(n+1)=3an+n得:
[a(n+1)+(1/2)*(n+1)^2+(1/2)*(n+1)+1/2]/[an+(1/2)*(n^2)+(1/2)*n+1/2]=3
所以[an+(1/2)*(n^2)+(1/2)*n+1/2]数列以(a1+1/2+1/2+1/2)为首项,3为公比的等比数列。
即:an+(1/2)*(n^2)+(1/2)*n+1/2=(a1+1/2+1/2+1/2)*3^(n-1)=(5/2)*3^(n-1)
所以an=(5/2)*3^(n-1)-(1/2)*(n^2)-(1/2)*n-1/2
第二题:由a1=1,an>0,a>0,将an^2=a*a(n+1)两边区对数得:
2ln(an)=lna+ln[a(n+1)]
所以{ln[a(n+1)]-lna}/{ln(an)-lna}=2
所以{ln(an)-lna}数列以(ln(a1)-lna)为首项,2为公比的等比数列.
即:ln(an)-lna=(ln(a1)-lna)*2^(n-1)
所以ln(an)=[1-2^(n-1)]lna
所以an=a^[1-2^(n-1)]
[a(n+1)+(1/2)*(n+1)^2+(1/2)*(n+1)+1/2]/[an+(1/2)*(n^2)+(1/2)*n+1/2]=3
所以[an+(1/2)*(n^2)+(1/2)*n+1/2]数列以(a1+1/2+1/2+1/2)为首项,3为公比的等比数列。
即:an+(1/2)*(n^2)+(1/2)*n+1/2=(a1+1/2+1/2+1/2)*3^(n-1)=(5/2)*3^(n-1)
所以an=(5/2)*3^(n-1)-(1/2)*(n^2)-(1/2)*n-1/2
第二题:由a1=1,an>0,a>0,将an^2=a*a(n+1)两边区对数得:
2ln(an)=lna+ln[a(n+1)]
所以{ln[a(n+1)]-lna}/{ln(an)-lna}=2
所以{ln(an)-lna}数列以(ln(a1)-lna)为首项,2为公比的等比数列.
即:ln(an)-lna=(ln(a1)-lna)*2^(n-1)
所以ln(an)=[1-2^(n-1)]lna
所以an=a^[1-2^(n-1)]
追问
第一题是如何变的,能详细点吗,谢谢
追答
一般用凑数法,待定系数法即可
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询