x的四次方-x³+mx²-2mx-2如何分解成两个整数系数的二次因式的积
展开全部
常数项-2只能分解为-1×2或1×(-2),所以这两个整系数的二次因式或为(x^2+ax-1)(x^2+bx+2),或为(x^2+cx+1)(x^2+dx-2)。
若是x^4-x^3+mx^2-2x-2=(x^2+ax-1)(x^2+bx+2),比较两边系数:-1=a+b,m=2-1+ab,-2=2a-b,解得a=-1,b=0,所以m=1,多项式的分解是x^4-x^3+x^2-2x-2=(x^2-x-1)(x^2+2)。
若是x^4-x^3+mx^2-2x-2=(x^2+cx+1)(x^2+dx-2),比较两边系数:-1=c+d,m=-2+1+cd,-2=d-2c,解得c=1/3,不是整数。
所以,如果x^4-x^3+mx^2-2x-2能分解成两个整数系数的二次因式的积,则m=1,多项式因式分解为x^4-x^3+x^2-2x-2=(x^2-x-1)(x^2+2)。
若是x^4-x^3+mx^2-2x-2=(x^2+ax-1)(x^2+bx+2),比较两边系数:-1=a+b,m=2-1+ab,-2=2a-b,解得a=-1,b=0,所以m=1,多项式的分解是x^4-x^3+x^2-2x-2=(x^2-x-1)(x^2+2)。
若是x^4-x^3+mx^2-2x-2=(x^2+cx+1)(x^2+dx-2),比较两边系数:-1=c+d,m=-2+1+cd,-2=d-2c,解得c=1/3,不是整数。
所以,如果x^4-x^3+mx^2-2x-2能分解成两个整数系数的二次因式的积,则m=1,多项式因式分解为x^4-x^3+x^2-2x-2=(x^2-x-1)(x^2+2)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询