如果函数y=sin2x+acos2x的图像关于直线x=-8/π对称 ,那么a=
1个回答
展开全部
解:
已知:函数y=sin2x+acos2x的图像关于x=-π/8对称,
所以:依据对称的定义,有:
sin[2(-π/8+x)]+acos[2(-π/8+x)]=sin[2(-π/8-x)]+acos[2(-π/8-x)]
sin(-π/4+2x)+acos(-π/4+2x)=sin(-π/4-2x)+acos(-π/4-2x)
sin(2x-π/4)+acos(2x-π/4)=-sin(π/4+2x)+acos(π/4+2x)
sin(2x)cos(π/4)-cos(2x)sin(π/4)+a[cos(2x)cos(π/4)+sin(2x)sin(π/4)]=
=-sin(2x)cos(π/4)-cos(2x)sin(π/4)+a[cos(2x)cos(π/4)-sin(2x)sin(π/4)]
sin(2x)(√2/2)-cos(2x)(√2/2)+a[cos(2x)(√2/2)+sin(2x)(√2/2)]=
=-sin(2x)(√2/2)-cos(2x)(√2/2)+a[cos(2x)(√2/2)-sin(2x)(√2/2)]
sin(2x)-cos(2x)+acos(2x)+asin(2x)=-sin(2x)-cos(2x)+acos(2x)-asin(2x)
2sin(2x)+2asin(2x)=0
sin(2x)+asin(2x)=0
解得:a=-1
很高兴能帮助到你。若满意记得“采纳为满意答案”喔!祝你开心~O(∩_∩)O~
已知:函数y=sin2x+acos2x的图像关于x=-π/8对称,
所以:依据对称的定义,有:
sin[2(-π/8+x)]+acos[2(-π/8+x)]=sin[2(-π/8-x)]+acos[2(-π/8-x)]
sin(-π/4+2x)+acos(-π/4+2x)=sin(-π/4-2x)+acos(-π/4-2x)
sin(2x-π/4)+acos(2x-π/4)=-sin(π/4+2x)+acos(π/4+2x)
sin(2x)cos(π/4)-cos(2x)sin(π/4)+a[cos(2x)cos(π/4)+sin(2x)sin(π/4)]=
=-sin(2x)cos(π/4)-cos(2x)sin(π/4)+a[cos(2x)cos(π/4)-sin(2x)sin(π/4)]
sin(2x)(√2/2)-cos(2x)(√2/2)+a[cos(2x)(√2/2)+sin(2x)(√2/2)]=
=-sin(2x)(√2/2)-cos(2x)(√2/2)+a[cos(2x)(√2/2)-sin(2x)(√2/2)]
sin(2x)-cos(2x)+acos(2x)+asin(2x)=-sin(2x)-cos(2x)+acos(2x)-asin(2x)
2sin(2x)+2asin(2x)=0
sin(2x)+asin(2x)=0
解得:a=-1
很高兴能帮助到你。若满意记得“采纳为满意答案”喔!祝你开心~O(∩_∩)O~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询