F1F2分别是椭圆C:x2/a2+y2/b2=1(a﹥b﹥0)的左,右焦点
,A是椭圆C的顶点,B是直线AF2与圆C的另一个交点,角F1AF2=60度(1)求椭圆的离心率(2)已知△AF1B1的面积为40根号3求a,b的值...
,A是椭圆C的顶点,B是直线AF2与圆C的另一个交点,角F1AF2=60度(1)求椭圆的离心率(2)已知△AF1B1的面积为 40根号3 求 a ,b的值
展开
2个回答
展开全部
(1)不妨设A是椭圆C的上顶点(0,b),角F1AF2=60度,
∴a=2c,
∴椭圆的离心率c/a=1/2.
(2)b=√3c,A(0,√3c),F2(c,0),AF2:y=-√3x+√3c,
代入x^2/(4c^2)+y^2/(3c^2)=1,得
x^2+4(x-c)^2=4c^2,
整理得5x^2-8cx=0,
解得xB=8c/5,yB=-3√3c/5,
|AB|=16c/5,
F1(-c,0)到AF2的距离h=√3c,
∴S△AF1B=(1/2)|AB|h=8√3c^2/5=40√3,
∴c^2=25,c=5,
∴a=10,b=5√3.
∴a=2c,
∴椭圆的离心率c/a=1/2.
(2)b=√3c,A(0,√3c),F2(c,0),AF2:y=-√3x+√3c,
代入x^2/(4c^2)+y^2/(3c^2)=1,得
x^2+4(x-c)^2=4c^2,
整理得5x^2-8cx=0,
解得xB=8c/5,yB=-3√3c/5,
|AB|=16c/5,
F1(-c,0)到AF2的距离h=√3c,
∴S△AF1B=(1/2)|AB|h=8√3c^2/5=40√3,
∴c^2=25,c=5,
∴a=10,b=5√3.
展开全部
因为 PM 是∠F1PF2 的角平分线,所以 F1M/MF2=PF1/PF2,M 一定在 F1 与 F2 中间;
-c<m<c;F1M=m+c,MF2=c-m;
因为 e²=c²/a²=(√3/2)²=3/4,所以 c=√3a/2,b²=a²-c²=a²(1-e²)=a²/4;
设 P 点坐标为(x,y),则 PF1=√[(x+c)²+y²]=√[(x+c)²+b²-b²x²/a²]=√(3x²/4 +2cx+a²);
类似地 PF2=√[3x²/4 -2cx+a²];
∴ (m+c)/(c-m)=√(3x²/4 +2cx+a²)/√(3x²/4 -2cx+a²)=√[(3x²/4 +2cx+a²)/(3x²/4 -2cx+a²)];
若 x=0,则 m=0;
若 0<x<a(m>0),则 (3x²/4 +2cx+a²)/(3x²/4 -2cx+a²)=1 +[4c/(3x/4 -2c+a²/x)]<1 +[4c/(3a/4 -2c+a)]=1+[(8√3)/(7-4√3)]=(7+4√3)/(7-4√3)=(7+4√3)²;(当 x=2√[(3/4)*a²]=√3a 时,上式有极大值,但按题意 x<a,上式只能在 x=a 处取得极大值);
∴ (c+m)/(c-m)<7+4√3,解得 m<c[(6+4√3)/(8+4√3)]=√3c/2=3a/4;
类似地,若 -a<x<0(m<0),则 m>-√3c/2=-3a/4;
所以 -√3c/2 <m<√3c/2;
-c<m<c;F1M=m+c,MF2=c-m;
因为 e²=c²/a²=(√3/2)²=3/4,所以 c=√3a/2,b²=a²-c²=a²(1-e²)=a²/4;
设 P 点坐标为(x,y),则 PF1=√[(x+c)²+y²]=√[(x+c)²+b²-b²x²/a²]=√(3x²/4 +2cx+a²);
类似地 PF2=√[3x²/4 -2cx+a²];
∴ (m+c)/(c-m)=√(3x²/4 +2cx+a²)/√(3x²/4 -2cx+a²)=√[(3x²/4 +2cx+a²)/(3x²/4 -2cx+a²)];
若 x=0,则 m=0;
若 0<x<a(m>0),则 (3x²/4 +2cx+a²)/(3x²/4 -2cx+a²)=1 +[4c/(3x/4 -2c+a²/x)]<1 +[4c/(3a/4 -2c+a)]=1+[(8√3)/(7-4√3)]=(7+4√3)/(7-4√3)=(7+4√3)²;(当 x=2√[(3/4)*a²]=√3a 时,上式有极大值,但按题意 x<a,上式只能在 x=a 处取得极大值);
∴ (c+m)/(c-m)<7+4√3,解得 m<c[(6+4√3)/(8+4√3)]=√3c/2=3a/4;
类似地,若 -a<x<0(m<0),则 m>-√3c/2=-3a/4;
所以 -√3c/2 <m<√3c/2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询