如图,已知,BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)求证:AB∥CD;(2)H是直线CD上一动
如图,已知,BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)求证:AB∥CD;(2)H是直线CD上一动点(不与点D重合),BI平分∠HBD.写出∠...
如图,已知,BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)求证:AB∥CD;(2)H是直线CD上一动点(不与点D重合),BI平分∠HBD.写出∠EBI与∠BHD的数量关系,并说明理由.
展开
2个回答
展开全部
解答:(1)证明:∵BE平分∠ABD,DE平分∠BDC,
∴∠ABD=2∠EBD,∠BDC=2∠BDE,
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2×90°=180°,
∴AB∥CD;
(2)解:∵BE平分∠ABD,
∴∠ABD=2∠EBD,
∵BI平分∠HBD,
∴∠HBD=2∠IBD,
如图1,点H在点D的左边时,∠ABH=∠ABD-∠HBD,
∠EBI=∠EBD-∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=∠ABH,
∴∠BHD=2∠EBI,
如图2,点H在点D的右边时,∠ABH=∠ABD+∠HBD,
∠EBI=∠EBD+∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=180°-∠ABH,
∴∠BHD=180°-2∠EBI,
综上所述,∠BHD=2∠EBI或∠BHD=180°-2∠EBI.
∴∠ABD=2∠EBD,∠BDC=2∠BDE,
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2×90°=180°,
∴AB∥CD;
(2)解:∵BE平分∠ABD,
∴∠ABD=2∠EBD,
∵BI平分∠HBD,
∴∠HBD=2∠IBD,
如图1,点H在点D的左边时,∠ABH=∠ABD-∠HBD,
∠EBI=∠EBD-∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=∠ABH,
∴∠BHD=2∠EBI,
如图2,点H在点D的右边时,∠ABH=∠ABD+∠HBD,
∠EBI=∠EBD+∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=180°-∠ABH,
∴∠BHD=180°-2∠EBI,
综上所述,∠BHD=2∠EBI或∠BHD=180°-2∠EBI.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询