已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接A
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求A...
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
展开
Kyoya迪LR9
推荐于2016-03-28
·
TA获得超过230个赞
知道答主
回答量:125
采纳率:100%
帮助的人:162万
关注
(1)5cm (2) ;a与b满足的数量关系式是a+b=12(ab≠0) |
试题分析:(1)证明:①∵四边形ABCD是矩形, ∴AD∥BC, ∴∠CAD=∠ACB,∠AEF=∠CFE, ∵EF垂直平分AC,垂足为O, ∴OA=OC, ∴△AOE≌△COF, ∴OE=OF, ∴四边形AFCE为平行四边形, 又∵EF⊥AC, ∴四边形AFCE为菱形, ②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm, 在Rt△ABF中,AB=4cm, 由勾股定理得4 2 +(8﹣x) 2 =x 2 , 解得x=5, ∴AF=5cm. (2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形; 同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形. 因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形, ∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA, ∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒, ∴PC=5t,QA=12﹣4t, ∴5t=12﹣4t, 解得 , ∴以A、C、P、Q四点为顶点的四边形是平行四边形时, 秒. ②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上. 分三种情况: i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12; ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12; iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12. 综上所述,a与b满足的数量关系式是a+b=12(ab≠0). 点评:本题考查平行四边形的判定,掌握平行四边形有那些判定方法,并能判定一个四边形是平行四边形 |
收起
为你推荐: