已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.... 已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2. 展开
 我来答
终极至尊SA0153
推荐于2019-09-17 · 超过57用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:140万
展开全部
(I)设等差数列{an}的公差为d≠0,
由题意a1,a11,a13成等比数列,∴
a
2
11
a1a13

(a1+10d)2a1(a1+12d),化为d(2a1+25d)=0,
∵d≠0,∴2×25+25d=0,解得d=-2.
∴an=25+(n-1)×(-2)=-2n+27.
(II)由(I)可得a3n-2=-2(3n-2)+27=-6n+31,可知此数列是以25为首项,-6为公差的等差数列.
∴Sn=a1+a4+a7+…+a3n-2=
n(a1+a3n?2)
2

=
n(25?6n+31)
2

=-3n2+28n.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式