已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2....
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n-2.
展开
1个回答
展开全部
(I)设等差数列{an}的公差为d≠0,
由题意a1,a11,a13成等比数列,∴
=a1a13,
∴(a1+10d)2=a1(a1+12d),化为d(2a1+25d)=0,
∵d≠0,∴2×25+25d=0,解得d=-2.
∴an=25+(n-1)×(-2)=-2n+27.
(II)由(I)可得a3n-2=-2(3n-2)+27=-6n+31,可知此数列是以25为首项,-6为公差的等差数列.
∴Sn=a1+a4+a7+…+a3n-2=
=
=-3n2+28n.
由题意a1,a11,a13成等比数列,∴
a | 2 11 |
∴(a1+10d)2=a1(a1+12d),化为d(2a1+25d)=0,
∵d≠0,∴2×25+25d=0,解得d=-2.
∴an=25+(n-1)×(-2)=-2n+27.
(II)由(I)可得a3n-2=-2(3n-2)+27=-6n+31,可知此数列是以25为首项,-6为公差的等差数列.
∴Sn=a1+a4+a7+…+a3n-2=
n(a1+a3n?2) |
2 |
=
n(25?6n+31) |
2 |
=-3n2+28n.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询