已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,
已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x...
已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.(1)求证:∠CAB=∠CEG;(2)①求y与x之间的函数关系式. ②x=______时,点F是AB的中点;(3)当x为何值时,点F是AC的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.
展开
1个回答
展开全部
解:(1)证明:连接EF(如图1)
∵点A、F、C在以点E为圆心,EC为半径的圆上,
∴EF=EC,∵EG⊥CF,∴∠CEF=2∠CEG
∵∠CEF=2∠CAB,∴∠CAB=∠CEG;(3分)
(2)(如图2)
①连接EF、EA.设⊙E的半径为r;
在Rt△ADE中,EA=r,DE=6-r,AD=x,
∴x2+(6-r)2=r2,r=
x2+3,
∵EF=EA,∴AF=2DE,
即y=2(6-r)=-
x2+6,(6分)
②点F是AB的中点时,y=3,
即-
x2+6=3,∴x=3
;(8分)
(3)(如图3);
当x=2
时,F是弧AC的中点.此时四边形AECF菱形;(9分)
理由如下:
∵点F是弧AC的中点,∴∠AEF=∠CEF,AF=CF,
∵AB∥CD,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∵AE=EF,
∴AE=AF=CE=CF,∴△AEF和△CEF都是正三角形,
∴四边形AECF是菱形,且∠CEF=60°,
∴∠BCF=30°,∴BF=
CF=
AF=
AB=2,BC=2
.(12分)
∵点A、F、C在以点E为圆心,EC为半径的圆上,
∴EF=EC,∵EG⊥CF,∴∠CEF=2∠CEG
∵∠CEF=2∠CAB,∴∠CAB=∠CEG;(3分)
(2)(如图2)
①连接EF、EA.设⊙E的半径为r;
在Rt△ADE中,EA=r,DE=6-r,AD=x,
∴x2+(6-r)2=r2,r=
1 |
12 |
∵EF=EA,∴AF=2DE,
即y=2(6-r)=-
1 |
6 |
②点F是AB的中点时,y=3,
即-
1 |
6 |
2 |
(3)(如图3);
当x=2
3 |
理由如下:
∵点F是弧AC的中点,∴∠AEF=∠CEF,AF=CF,
∵AB∥CD,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∵AE=EF,
∴AE=AF=CE=CF,∴△AEF和△CEF都是正三角形,
∴四边形AECF是菱形,且∠CEF=60°,
∴∠BCF=30°,∴BF=
1 |
2 |
1 |
2 |
1 |
3 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询