(2014?曲靖模拟)如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).(1)求
(2014?曲靖模拟)如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标...
(2014?曲靖模拟)如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点C(0,-5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.(2)在上面所求二次函数的对称轴上存在一点P(2,-2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.
展开
1个回答
展开全部
(1)根据题意,
得
,
解得
,
∴二次函数的表达式为y=x2-4x-5,
当y=0时,x2-4x-5=0,
解得:x1=5,x2=-1,
∵点A的坐标是(-1,0),
∴B(5,0),
答:该二次函数的解析式是y=x2-4x-5,和它与x轴的另一个交点B的坐标是(5,0).
(2)令y=0,得二次函数y=x2-4x-5的图象与x轴
的另一个交点坐标B(5,0),
由于P(2,-2),符合条件的坐标有共有4个,
分别是M1(4,0)M2(2,0)M3(-2
,0)M4(2
,0),
答:x轴上所有点M的坐标是(4,0)、(2,0)、(-2
,0)、(2
得
|
解得
|
∴二次函数的表达式为y=x2-4x-5,
当y=0时,x2-4x-5=0,
解得:x1=5,x2=-1,
∵点A的坐标是(-1,0),
∴B(5,0),
答:该二次函数的解析式是y=x2-4x-5,和它与x轴的另一个交点B的坐标是(5,0).
(2)令y=0,得二次函数y=x2-4x-5的图象与x轴
的另一个交点坐标B(5,0),
由于P(2,-2),符合条件的坐标有共有4个,
分别是M1(4,0)M2(2,0)M3(-2
2 |
2 |
答:x轴上所有点M的坐标是(4,0)、(2,0)、(-2
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|