如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,-a)(a

如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,-a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=4... 如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,-a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积. 展开
 我来答
淦雨筠zw
推荐于2016-01-11 · TA获得超过133个赞
知道答主
回答量:169
采纳率:0%
帮助的人:118万
展开全部
解答:(1)证明:过C点、D点向x轴、y轴作垂线,垂足分别为M、N.
∵C(a,b),D(b,-a)(a、b均大于0),
∴OM=ON=a,CM=DN=b,
∴△OCM≌△ODN(SAS),
∴∠COM=∠DON.
∵∠DON+∠MOD=90°,
∴∠COM+∠MOD=90°,
∵OC=OD=
a2+b2

∴△COD是等腰直角三角形,
∴∠ODC=45°;

(2)解:连接DA.
在△OCB与△ODA中,
OB=OA
∠BOC=∠AOD=90°?∠COA
OC=OD

∴△OCB≌△ODA(SAS),
∴AD=CB=1,∠OCB=∠ODA.
∵OC=OD=2,
∴CD=2
2

∵AD2+CD2=1+8=9,AC2=9,
∴AD2+CD2=AC2
∴∠ADC=90°,
∴∠OCB=∠ODA=90°+45°=135°;

(3)解:作CF⊥OA,F为垂足,由勾股定理得
CF2=CE2-EF2,CF2=CA2-AF2=CA2-(AE+EF)2
设EF=x,可得52-x2=72-(3+x)2
解得x=
5
2

在Rt△CEF中,得CF=
52?(
5
2
)2
=
5
2
3

∴OF=CF=
5
2
3

∴△OCA的面积=
1
2
?OA?CF
=
1
2
×(
5
2
3
+
5
2
+3)×
5
2
3
=
75+55
3
8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式