利用行列式展开定理证明第五题 大神帮帮忙
1个回答
展开全部
证明:
按第1列展开得: Dn=(a+b)D(n-1) - abD(n-2).
下用归纳法证明
当n=1时, D1=a+b
[a^(n+1)-b^(n+1)]/(a-b)=(a^2-b^2)/(a-b)=a+b
所以n=1时结论成立.
假设k<n时结论成立, 则k=n时
Dn=(a+b)D(n-1) - abD(n-2)
=(a+b){[a^(n-1+1)-b^(n-1+1)]/(a-b)} - ab{[a^(n-2+1)-b^(n-2+1)]/(a-b)}
=(a+b){[a^n-b^n]/(a-b)} - ab{[a^(n-1)-b^(n-1)]/(a-b)}
= [a^(n+1)-b^(n+1)-ab^n+ba^n-ba^n+ab^n]/(a-b)
= [a^(n+1)-b^(n+1)]/(a-b)
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=[a^(n+1)-b^(n+1)]/(a-b).
按第1列展开得: Dn=(a+b)D(n-1) - abD(n-2).
下用归纳法证明
当n=1时, D1=a+b
[a^(n+1)-b^(n+1)]/(a-b)=(a^2-b^2)/(a-b)=a+b
所以n=1时结论成立.
假设k<n时结论成立, 则k=n时
Dn=(a+b)D(n-1) - abD(n-2)
=(a+b){[a^(n-1+1)-b^(n-1+1)]/(a-b)} - ab{[a^(n-2+1)-b^(n-2+1)]/(a-b)}
=(a+b){[a^n-b^n]/(a-b)} - ab{[a^(n-1)-b^(n-1)]/(a-b)}
= [a^(n+1)-b^(n+1)-ab^n+ba^n-ba^n+ab^n]/(a-b)
= [a^(n+1)-b^(n+1)]/(a-b)
所以k=n时结论也成立.
综上可知, 对任意自然数n, Dn=[a^(n+1)-b^(n+1)]/(a-b).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询