设向量a=(cos25度,sin25度),向量b(sin20度,cos20度),若向量c=向量a+t向量b t属于R

设向量a=(cos25度,sin25度),向量b(sin20度,cos20度),若向量c=向量a+t向量bt属于R,则向量c的模的最小值为... 设向量a=(cos25度,sin25度),向量b(sin20度,cos20度),若向量c=向量a+t向量b t属于R,则向量c的模的最小值为 展开
370116
高赞答主

2009-09-17 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
解:
|b|^2=(sin20)^2+(cos20)^2=1
|a|^2=1
a.b=sin20cos25+cos20sin25=sin(20+25)=根号2/2
c^2=a^2+t^2*b^2+2t*(ab)
看成关于t的一元二次函数,因为t是实数,
当|c|取得最小值时,实数t =-(a•b)/b^2=-根号2/2,
c^2=1+1/2-2根号2/2*根号2/2=1/2
即:|c|最小值是根号2/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式