函数y=sin(π/3-1/2χ),π∈[0,4π],求函数的单调递减区间
3个回答
展开全部
原题是:函数y=sin(π/3-x/2),x∈[0,4π],求函数的单调递减区间.
y=sin(π/3-x/2)=-sin(x/2-π/3)
=sin(x/2-π/3+π)=sin(x/2+2π/3)
即y=sin(x/2+2π/3)
x∈[0,4π],x/2+2π/3∈[2π/3,2π+2π/3]
当2π/3≤x/2+2π/3≤2π/2或2π+π/2≤x/2+2π/3≤2π+2π/3
即0≤x/≤5π/3或11π/3≤x≤4π时,x在单减区间中.
所以原函数的单减区间是[0,5π/3],[11π/3,4π]
希望能帮到你!
y=sin(π/3-x/2)=-sin(x/2-π/3)
=sin(x/2-π/3+π)=sin(x/2+2π/3)
即y=sin(x/2+2π/3)
x∈[0,4π],x/2+2π/3∈[2π/3,2π+2π/3]
当2π/3≤x/2+2π/3≤2π/2或2π+π/2≤x/2+2π/3≤2π+2π/3
即0≤x/≤5π/3或11π/3≤x≤4π时,x在单减区间中.
所以原函数的单减区间是[0,5π/3],[11π/3,4π]
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询