3个回答
展开全部
2000
2x²-4xy+4y²-8x+2016
=x²-4xy+4y²+x²-8x+2016
=(x-2y)²+(x-4)²+2016-16
=(x-2y)²+(x-4)²+2000
因为=(x-2y)²≥0,且(x-4)²≥0。
所以(x-2y)²+(x-4)²+2000≥2000。
所以原式的最小值为2000.
这道题目关键在于将原始化为两个完全平方项的和,即找出(x-2y)²+(x-4)²,由于题目中有2x²-4xy+4y²,很容易看出要化为x²-4xy+4y²,那么多了一个x²,后面正好有-8x所以又可以拆成x²-8x+16,然后组成(x-2y)²+(x-4)²。
这类求最大最小值的问题无非就是找出完全平方项,熟练的就能较容易的看出,关键在于多做题。
2x²-4xy+4y²-8x+2016
=x²-4xy+4y²+x²-8x+2016
=(x-2y)²+(x-4)²+2016-16
=(x-2y)²+(x-4)²+2000
因为=(x-2y)²≥0,且(x-4)²≥0。
所以(x-2y)²+(x-4)²+2000≥2000。
所以原式的最小值为2000.
这道题目关键在于将原始化为两个完全平方项的和,即找出(x-2y)²+(x-4)²,由于题目中有2x²-4xy+4y²,很容易看出要化为x²-4xy+4y²,那么多了一个x²,后面正好有-8x所以又可以拆成x²-8x+16,然后组成(x-2y)²+(x-4)²。
这类求最大最小值的问题无非就是找出完全平方项,熟练的就能较容易的看出,关键在于多做题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分解公式:
原式=x²-4xy+4y²+x²-8x+16+2000
=(x-2y)²+(x-4)²+2000
由于:
(x-2y)²≥0 当x=2y时取到最小值0
(x-4)² ≥0 当x=4 时取到最小值0
当且仅当x=2y=4,即x=4,y=2时,
原式:2x²-4xy+4y²-8x+2016=(x-2y)²+(x-4)²+2000≥2000
所以最小值是2000
原式=x²-4xy+4y²+x²-8x+16+2000
=(x-2y)²+(x-4)²+2000
由于:
(x-2y)²≥0 当x=2y时取到最小值0
(x-4)² ≥0 当x=4 时取到最小值0
当且仅当x=2y=4,即x=4,y=2时,
原式:2x²-4xy+4y²-8x+2016=(x-2y)²+(x-4)²+2000≥2000
所以最小值是2000
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询