极限的证明题,谢谢!
1个回答
展开全部
证明:
任取x∈(0,+无穷)
f(x)=f(x^2)=f(x^4)=f(x^8)=……=f(x^(2^n))
1.当x∈(1,+无穷)时,x²>x
所以,lim(n->无穷)x^(2^n)=x^(+无穷)=+无穷
f(x)=f(x^2)=……=f(x^(2^n))=limf(x) (x->+无穷) =f(1)
2.当x∈(0,1)时,x²无穷)x^(2^n)=x^(+无穷)=0
f(x)=f(x^2)=……=f(x^(2^n))=limf(x) (x->0) =f(1)
所以,f(x) = f(1)恒成立 ,x属于(0,+无穷)
任取x∈(0,+无穷)
f(x)=f(x^2)=f(x^4)=f(x^8)=……=f(x^(2^n))
1.当x∈(1,+无穷)时,x²>x
所以,lim(n->无穷)x^(2^n)=x^(+无穷)=+无穷
f(x)=f(x^2)=……=f(x^(2^n))=limf(x) (x->+无穷) =f(1)
2.当x∈(0,1)时,x²无穷)x^(2^n)=x^(+无穷)=0
f(x)=f(x^2)=……=f(x^(2^n))=limf(x) (x->0) =f(1)
所以,f(x) = f(1)恒成立 ,x属于(0,+无穷)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询