高数解微分方程

 我来答
百度网友8f04304
2018-01-03 · TA获得超过2240个赞
知道小有建树答主
回答量:546
采纳率:88%
帮助的人:435万
展开全部


可以用拉普拉斯变换,但经过考虑,我还是不写了

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2018-01-03 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67421

向TA提问 私信TA
展开全部
求微分方程 y''-4y'+4y=e^(2x)的通解
解:齐次方程 y''-4y'+4y=0 的特征方程 r²-4r+4=(r-2)²=0的根(重根)r=2;
故齐次方程的通解为:y=e^(2x)(c₁+c₂x);
因为e^(2x)中的指数有2,是特征方程的根,因此要设特解:y*=ax²e^(2x).......①
于是,y'=2axe^(2x)+2ax²e^(2x)=2a(x+x²)e^(2x)............②
y''=2a(1+2x)e^(2x)+4a(x+x²)e^(2x)=2a(1+4x+2x²)e^(2x)..........③
将①②③代入原式得:
2a(1+4x+2x²)e^(2x)-8a(x+x²)e^(2x)+4ax²e^(2x)=e^(2x)
整理化简得2a=1,故a=1/2;
即特解为:y*=(1/2)x²e^(2x);
故通解为:y=[c₁+c₂x+(1/2)x²]e^(2x).
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2018-01-03 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7955万
展开全部
特征方程 r^2 - 4r + 4 = 0, 特征根 r = 2, 2.
设特解 y = Ax^2e^(2x), 则 y' = 2A(x^2+x)e^(2x),
y'' = 2A(2x^2+4x+1)e^(2x), 代入微分方程得 A = 1/2,
微分方程的通解是 y = [C1 + C2x + (1/2)x^2] e^(2x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
和光铜陈
2018-01-03 · TA获得超过1980个赞
知道小有建树答主
回答量:2489
采纳率:87%
帮助的人:285万
展开全部
代公式即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式