求问一道高数题

 我来答
g921240914
2018-11-16
知道答主
回答量:4
采纳率:0%
帮助的人:1.6万
展开全部
设 x=tant,dx=(sect)^2dt,
t=arctanx,1+x^2=(sect)^2,cost=1/√(1+x^2),
sint=x/√(1+x^2),
sin2t=2sintcost=2x/(1+x^2)
原式=∫(tant)^2(sect)^2dt/*(sect)^4
=∫(sint)^2*(cost)^2dt/(cost)^2
=∫(sint)^2dt
=(1/2)∫(1-cos2t)dt
=t/2-(1/4)sin2t+C
=(1/2)arctanx-x/[2(1+x^2)]+C.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式