3个回答
展开全部
要将“微积分”的意思、能解决的问题讲得全面,需要写一本厚厚的大部头巨著。下面尝试做一个简要的说明:
1、微分的“微”,是细小、分割、分割得很细小的意思;积分的“积”是累计、合计、求和的意思。
2、初等数学所解决的都是规则性的问题,任意形状的面积、体积都是无法计算的。变化的力、加速度、速度、位移之间的一般关系;温度变化与热量的传输;变化的力做功;带电体周围的电场强度分布、电势分布;转动物体的质量分布对转动的影响;。。。。。。。。。。这些都是初等数学无法解决的,必须要用微积分的方法才能进行一般性地计算。
3、微分的简单说法,就是计算相关变化率、牵连变化率一类的问题,思想方法上可以概括成:分割、求比、取极限;几何意义是从求割线的斜率过渡到切线的斜率。积分的基本思想可以概括成:分割、求和、取极限。几何意义就是微元面积之和。
4、微积分的应用无所不在,物理、化学、生物、地质、气象、海洋、水文、天文、电子、电脑、电机、机械、化工、冶炼..............中运用不在话下,在经济、金融、财会、管理..........也有着极其广泛的应用。可以说,没有微积分,就没有现代科技;不懂微积分,就不知道最基本的数理逻辑。
楼主如有兴趣,本人愿意提供其他具体讲解。如果楼主英文感兴趣,本人愿意同时提供英文解说。
1、微分的“微”,是细小、分割、分割得很细小的意思;积分的“积”是累计、合计、求和的意思。
2、初等数学所解决的都是规则性的问题,任意形状的面积、体积都是无法计算的。变化的力、加速度、速度、位移之间的一般关系;温度变化与热量的传输;变化的力做功;带电体周围的电场强度分布、电势分布;转动物体的质量分布对转动的影响;。。。。。。。。。。这些都是初等数学无法解决的,必须要用微积分的方法才能进行一般性地计算。
3、微分的简单说法,就是计算相关变化率、牵连变化率一类的问题,思想方法上可以概括成:分割、求比、取极限;几何意义是从求割线的斜率过渡到切线的斜率。积分的基本思想可以概括成:分割、求和、取极限。几何意义就是微元面积之和。
4、微积分的应用无所不在,物理、化学、生物、地质、气象、海洋、水文、天文、电子、电脑、电机、机械、化工、冶炼..............中运用不在话下,在经济、金融、财会、管理..........也有着极其广泛的应用。可以说,没有微积分,就没有现代科技;不懂微积分,就不知道最基本的数理逻辑。
楼主如有兴趣,本人愿意提供其他具体讲解。如果楼主英文感兴趣,本人愿意同时提供英文解说。
展开全部
微积分是整个高等数学的根本.是物理,工业等一切生活及科学的基本工具.能解决很多实际问题.任何科学都离不开它.你以后学到专业就会明白的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
参考资料: 百度百科
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |