设实数m、n满足m+n=4,求根号m^2+n^2-2m+2n+2的最小值
1个回答
展开全部
m+n=4
即
m=4-n
,
代入
m^2+n^2-2m+2n+2
m^2+n^2-2m+2n+2
=(4-n)^2+n^2-2(4-n)+2n+2
=16-8n+n^2+n^2-8+2n+2n+2
=2n^2-4n+10
=2(n^2-2n+1)+8
=2(n-3)^2+8
,
由于
2(n-3)^2≥0,
所以
2(n-3)^2+8≥8,
于是 2(n-3)^2-8的最小值为8
,即m^2+n^2-2m+2n+2的最小值为8,
所以根号m^2+n^2-2m+2n+2的最小值为根号8=2根号2.
即
m=4-n
,
代入
m^2+n^2-2m+2n+2
m^2+n^2-2m+2n+2
=(4-n)^2+n^2-2(4-n)+2n+2
=16-8n+n^2+n^2-8+2n+2n+2
=2n^2-4n+10
=2(n^2-2n+1)+8
=2(n-3)^2+8
,
由于
2(n-3)^2≥0,
所以
2(n-3)^2+8≥8,
于是 2(n-3)^2-8的最小值为8
,即m^2+n^2-2m+2n+2的最小值为8,
所以根号m^2+n^2-2m+2n+2的最小值为根号8=2根号2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询