求下列幂级数的和函数 ∑(n=1,∞) x^n/n(n+1)

 我来答
茹翊神谕者

2021-11-06 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1601万
展开全部

简单计算一下即可,答案如图所示

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
谈竹辛启
2020-07-11 · TA获得超过1128个赞
知道小有建树答主
回答量:1706
采纳率:100%
帮助的人:7.9万
展开全部
令f(x)=∑x^n/n(n+1)
则f'(x)=∑x^(n-1)/(n+1)=1/x²∑x^(n+1)/(n+1)
再记g(x)=∑x^(n+1)/(n+1)
则g'(x)=∑x^n=x/(1-x)=-1+1/(1-x), 收敛域为|x|<1
积分得:g(x)=C-x-ln(1-x)
因为g(0)=0, 故有C=0, 得g(x)=-x-ln(1-x)
故有f'(x)=1/x²g(x)=-1/x-1/x²ln(1-x)
积分得:f(x)=C-ln|x|-∫1/x²ln(1-x)dx
=C-ln|x|-[-1/xln(1-x)-∫1/x(1-x)dx]
=C-ln|x|+1/xln(1-x)+ln|x|-ln(1-x)
=C+(1/x)ln(1-x)-ln(1-x)
由于f(0+)=0, 得C-1=0, 即C=1
从而f(x)=1+(1/x)ln(1-x)-ln(1-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式