线性代数问题 设A是2阶矩阵 且A^5=0 证明 (E-A)的逆矩阵=E+A

 我来答
茹翊神谕者

2022-12-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1536万
展开全部

简单分析一下,详情如图所示

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
永问辜欣怿
2019-06-07 · TA获得超过1137个赞
知道小有建树答主
回答量:1485
采纳率:93%
帮助的人:6.4万
展开全部
先将A^5 依次左乘A^(-1) 因为A^(-1)*A=1 最后可以得到A^2=0
之后两边加E
E=E+A^2
把A^2移到左边可以化成(E+A)(E-A)=E
两边右乘(E-A)^(-1)得到
E+A=E*(E-A)^(-1)又因为E乘以任何矩阵都等于原矩阵
所以
(E-A)的逆矩阵=E+A
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式