sin(π/2^n)可以用比值审敛法判断敛散性吗?如果能麻烦写一下步骤

 我来答
东方欲晓09
2021-03-10 · TA获得超过8623个赞
知道大有可为答主
回答量:6114
采纳率:25%
帮助的人:1553万
展开全部
可以。lim{n->oo} sin(π/2^n) ~ π/2^n
By p-series test, π/2^n 收敛。所以,级数sin(π/2^n)亦收敛。
追问
比值审敛法不是lim{n-->∞}Un+1/Un吗?
可以写成lim{n-->∞}sin(π/2^n+1)/sin(π/2^n)=(π/2^n+1)/(π/2^n)=2^n/2^n+1=1/2吗
追答
和p-series比较,英语叫 limit comparison test.
因为lim{n->oo} sin(π/2^n) ~ π/2^n,所以 lim{n-->∞}sin(π/2^n)/(π/2^n) = 1
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
茹翊神谕者

2021-03-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1552万
展开全部

简单计算一下即可,答案如图所示

更多追问追答
追问
比值审敛法不是lim{n-->∞}Un+1/Un吗?
可以写成lim{n-->∞}sin(π/2^n+1)/sin(π/2^n)=(π/2^n+1)/(π/2^n)=2^n/2^n+1=1/2吗
追答
你的做法也是正确的
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2021-03-10 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7954万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式