一道数学分析或者说高数题求解,类似常微分方程的题,帮忙给第一问提示一下思路就行!
2个回答
展开全部
定义域 :x ≠ -1. x = 0 时, 得 f'(0) = -1.
两边同乘以 x+1,得
(x+1)f'(x) + (x+1)f(x) - ∫<0, x>f(t)dt = 0
两边对 x 求导, 得
(x+1)f''(x) + (x+2)f'(x) = 0
令 p = f(x), 得 p' = [-(x+2)/(x+1)]p
dp/p = [-(x+2)/(x+1)]dx = [-1-1/(x+1)]dx
lnp = -x-ln(x+1) + lnC1
p = f'(x) = C1e^(-x)/(x+1), f'(0) = -1 代入得 C1 = -1
得 f'(x) = -e^(-x)/(x+1) ;
两边同乘以 x+1,得
(x+1)f'(x) + (x+1)f(x) - ∫<0, x>f(t)dt = 0
两边对 x 求导, 得
(x+1)f''(x) + (x+2)f'(x) = 0
令 p = f(x), 得 p' = [-(x+2)/(x+1)]p
dp/p = [-(x+2)/(x+1)]dx = [-1-1/(x+1)]dx
lnp = -x-ln(x+1) + lnC1
p = f'(x) = C1e^(-x)/(x+1), f'(0) = -1 代入得 C1 = -1
得 f'(x) = -e^(-x)/(x+1) ;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询