直线方程的两点式和一般式
3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
直线方程的公式有以下几种:斜截式:y=kx+b截距式:x/a+y/b=1两点式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)一般式:ax+by+c=0只要知道两点坐标,代入任何一种公式,都可以求出直线的方程。由两点这样求直线方...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
若直线过点p(x0,y0),方向向量v=(v1,v2)
则直线的点向式方程可写为:
v2*(x-x0)
-
v1*(y-y0)=0
上式去括号得:
v2*x-
v2*x0
-
v1*y
+
v1*y0=0
即v2*x
-
v1*y
+
v1*y0
-
v2*x0
=0
这就是所求的直线的一般式方程,其中法向量n=(v2,-v1)
.
若已知直线的一般式方程为ax+by+c=0且过点p(x0,y0)
可知直线的法向量n=(a,b)
那么直线的一个方向向量v=(-b,a)
所以直线的点向式方程可写为:a*(x-x0)-(-b)*(y-y0)=0
则直线的点向式方程可写为:
v2*(x-x0)
-
v1*(y-y0)=0
上式去括号得:
v2*x-
v2*x0
-
v1*y
+
v1*y0=0
即v2*x
-
v1*y
+
v1*y0
-
v2*x0
=0
这就是所求的直线的一般式方程,其中法向量n=(v2,-v1)
.
若已知直线的一般式方程为ax+by+c=0且过点p(x0,y0)
可知直线的法向量n=(a,b)
那么直线的一个方向向量v=(-b,a)
所以直线的点向式方程可写为:a*(x-x0)-(-b)*(y-y0)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询