已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ. 求证:l⊥γ.
1个回答
展开全部
见解析
证明:设α∩γ=m,β∩γ=n,
因为平面α∩平面β=l,
所以在l任意取一点P,过P在平面α内作PA⊥m,
因为α⊥平面γ,α∩γ=m,
所以PA⊥γ,
过P在平面β内作PB⊥n,
因为β⊥平面γ,β∩γ=n,
所以PB⊥γ,
所以PA,PB重合即为l,
所以l⊥γ.
证明:设α∩γ=m,β∩γ=n,
因为平面α∩平面β=l,
所以在l任意取一点P,过P在平面α内作PA⊥m,
因为α⊥平面γ,α∩γ=m,
所以PA⊥γ,
过P在平面β内作PB⊥n,
因为β⊥平面γ,β∩γ=n,
所以PB⊥γ,
所以PA,PB重合即为l,
所以l⊥γ.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-08-07 广告
2024-08-07 广告
导热系数标准板的标定是确保测量准确性的关键步骤。在大凡光学科技有限公司,我们严格遵循标定流程,使用标准参比板在特定条件下进行测试。标定过程中,我们确保参比板干燥且质量恒定,控制适当的压力与温差范围。实验结束后,我们依据实验数据与理论值计算标...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询