矩阵A>B,即A-B正定,是不是一定有行列式|A|>|B|?

 我来答
枝其3052
2022-07-08 · TA获得超过3071个赞
知道小有建树答主
回答量:3612
采纳率:100%
帮助的人:190万
展开全部
是.可以简单证明一下:
取可逆阵D,使得A=D^TD,D^T是D的转置.
则A--B=D^T(E--D^(--T)BD^(--1))D,
于是E--D^(--T)BD^(--1)是正定阵,
D^(--T)BD^(--1)的特征值都大于0小于1,
于是其行列式大于0小于1,即
det(B)/det(A)=det(B)*det(A^(--1))
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式