设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 世纪网络17 2022-05-14 · TA获得超过5953个赞 知道小有建树答主 回答量:2426 采纳率:100% 帮助的人:143万 我也去答题访问个人页 关注 展开全部 令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0故这个关于x的... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-05-24 设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx 2022-06-18 设f(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明∫(上b下a)f(x)f'(x)dx=1/2(a²-b²) 2022-05-28 设f'(x)在[a,b]上连续,且f(a)=0,│∫(a~b)f(x)dx│≤((b-a)^2)/2)max(a≤x≤b)│f'(x)│ 2022-05-24 设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^2. 2022-05-24 设f'(x)∈C[a,b],f(a)=f(b)=0,证明 |f(x)|≤1/2∫(a,b)|f'(x)|dx 2022-05-17 若f(x)在[a,b]上连续,证明:若f(x)为奇函数,则∫(-a,a)f(x)dx=o 2018-03-29 设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|<={[(b-a)^2]/2}*max|f'(x)| 45 2020-04-17 f(x)在[a,b]连续且f(x)>0,证明∫f(x)dx·∫1/f(x)dx≥(b-a)²。 为你推荐: