设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
1个回答
展开全部
令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0故这个关于x的...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |