若f(x)在[a,b]上连续,证明:若f(x)为奇函数,则∫(-a,a)f(x)dx=o
展开全部
左边=∫(-a→0)f(x)dx+∫(0→a)f(x)dx=(在第一项令x=-t)∫(a→0)f(-t)d(-t)+∫(0→a)f(x)dx=∫(a→0)f(t)dt+∫(0→a)f(x)dx=-∫(0→a)f(t)dt+∫(0→a)f(x)dx=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询