任意n阶行列式都存在对角线法则对吗

33... 33 展开
 我来答
痴情镯
高粉答主

2022-01-12 · 关注我不会让你失望
知道小有建树答主
回答量:1040
采纳率:100%
帮助的人:15.9万
展开全部

任意n阶行列式都存在对角线法则不对。对角线法则只存在于二阶和三阶的行列式。

萨鲁斯法则(Sarrus rule)是展开二阶和三阶行列式的方法,萨鲁斯法则可以表述为二、三阶行列式等于主对角线上元素的乘积减去次对角线上元素的乘积,并称为二、三阶行列式的对角线法则。

在n阶行列式D=|aij|中,从左上角到右下角称为D的主对角线,元素a11,a22,…,ann称为主对角线上的元素,简称主对角元;从右上角到左下角称为D的次对角线,而元素a1n,a2,n-1,…,an1称为次对角线上的元素,简称次对角元,因而,萨鲁斯法则亦称对角线法则。

n阶行列式的性质:

性质1 行列互换,行列式不变。

性质2 把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

性质3 如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

性质4 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)

性质5 如果行列式中两行(列)成比例,那么行列式为零。

性质6 把一行(列)的倍数加到另一行(列),行列式不变。

性质7 对换行列式中两行(列)的位置,行列式反号。 

WYZZWB2011407d2e
高能答主

2021-12-30 · 最想被夸「你懂的真多」
知道大有可为答主
回答量:5.2万
采纳率:77%
帮助的人:7613万
展开全部
对角线法则只存在于二阶和三阶的行列式。
萨鲁斯法则(Sarrus rule)是展开二阶和三阶行列式的方法,萨鲁斯法则可以表述为二、三阶行列式等于主对角线上元素的乘积减去次对角线上元素的乘积,并称为二、三阶行列式的对角线法则。 [1] 在n阶行列式D=|aij|中,从左上角到右下角称为D的主对角线,元素a11,a22,…,ann称为主对角线上的元素,简称主对角元;从右上角到左下角称为D的次对角线,而元素a1n,a2,n-1,…,an1称为次对角线上的元素,简称次对角元,因而,萨鲁斯法则亦称对角线法则。
二阶和三阶行列式按图《二阶行列式按萨鲁斯法则展开》所示进行计算:实线上的元素的乘积带有正号,虚线上的元素的乘积带有负号,并将这些乘积相加,得到二阶与三阶行列式的展开式。
只有二阶和三阶行列式具有萨鲁斯法则,四阶及以上的行列式不存在萨鲁斯法则。
希望我能帮助你解疑释惑。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式