11和25是互质数吗?
展开全部
判断互质数的五种方法
一. 概念判断法
公约数只有1的两个数叫做互质数。根据互质数的概念可以对一组数是否互质进行判断。如:9和11的公约数只有1,则它们是互质数。
二. 规律判断法
根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。
(1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。
(2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。
(3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。
(4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。
(5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。
(6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。
(7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。
三. 分解判断法
如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。
四. 求差判断法
如果两个数相差不大,可先求出它们的差,再看差与其中较小数是否互质。如果互质,则原来两个数一定是互质数。如:194和201,先求出它们的差,201-194=7,因7和194互质,则194和201是互质数。
五. 求商判断法
用大数除以小数,如果除得的余数与其中较小数互质,则原来两个数是互质数。如:317和52,317÷52=6……5,因余数5与52互质,则317和52是互质数。
一. 概念判断法
公约数只有1的两个数叫做互质数。根据互质数的概念可以对一组数是否互质进行判断。如:9和11的公约数只有1,则它们是互质数。
二. 规律判断法
根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。
(1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。
(2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。
(3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。
(4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。
(5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。
(6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。
(7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。
三. 分解判断法
如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。
四. 求差判断法
如果两个数相差不大,可先求出它们的差,再看差与其中较小数是否互质。如果互质,则原来两个数一定是互质数。如:194和201,先求出它们的差,201-194=7,因7和194互质,则194和201是互质数。
五. 求商判断法
用大数除以小数,如果除得的余数与其中较小数互质,则原来两个数是互质数。如:317和52,317÷52=6……5,因余数5与52互质,则317和52是互质数。
展开全部
11和25只有公因数1,所以它们是互质数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个题是一个数学问题。11和25并不是互为质数的,所以这个题是错的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是的。因为在对它们进行质因数分解后,从中没有发现有着除1以外的公因数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为
11=1×11
25=1×5×5
所以,11和25没有公因数,他们是互质的
因此11和25的最小公倍数是11×25=275
11=1×11
25=1×5×5
所以,11和25没有公因数,他们是互质的
因此11和25的最小公倍数是11×25=275
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询