一道不定积分∫cos∧4xsin∧2xdx?

 我来答
舒适还明净的海鸥i
2022-11-14 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:67.7万
展开全部
∵cos^4xsin^2x
=cos^4x(1-cos²x)
=cos^4x-cos^6x
=[1+cos(2x)]²/4-[1+cos(2x)]³/8
=[1+2cos(2x)+cos²(2x)]/4-[1+3cos(2x)+3cos²(2x)+cos³(2x)]/8
=1/8+1/8cos(2x)-1/8cos²(2x)-1/8cos³(2x)
=1/8+1/8cos(2x)-[1+cos(4x)]/16-1/8cos³(2x)
=1/16+1/8cos(2x)-cos(4x)/16-1/8cos³(2x)
∴∫cos^4xsin^2xdx
=∫[1/16+1/8cos(2x)-cos(4x)/16-1/8cos³(2x)]dx
=x/16+sin(2x)/16-sin(4x)/64-1/16∫[1-sin²(2x)]d[sin(2x)]
=x/16+sin(2x)/16-sin(4x)/64-[sin(2x)-sin³(2x)/3]/16+C
=x/16-sin(4x)/64+sin³(2x)/48+C,4,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式