如何用反余弦函数求角度?
1个回答
展开全部
具体回答如下:
令u=tanx/2
则sinx=2u/(1+u²)
cosx=(1-u²)/(1+u²)
dx=2du/(1+u²)
∫1/(sinx+cosx)
=∫2/(1+2u-u²)du
=√2/2∫[1/(u-(1-√2))-1/(u-(1+√2))]du
=√2/2ln|(u-(1-√2))/(u-(1+√2))|+C
=√2/2ln|(tanx/2-1+√2)/(tanx/2-1-√2)+C
反余弦函数
在数学中,反三角函数是三角函数的反函数(具有适当的限制域)。 具体来说,它们是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。
反余弦函数(反三角函数之一)为余弦函数y=cosx(x∈[0,π])的反函数,记作y=arccosx或cosy=x(x∈[-1,1]).。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知余弦函数的图像和反余弦函数的图像也关于一三象限角平分线对称。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询