已知幂函数y=x^(m^2-2m-3)(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数、

已知幂函数y=x^(m^2-2m-3)(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数、求满足(a+1)^-m/3<(3-2a)^-m/3的a的取值范围2.已... 已知幂函数y=x^(m^2-2m-3)(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数、求满足(a+1)^-m/3<(3-2a)^-m/3的a的取值范围
2.已知幂函数f(x)=x^(m^2-2m-3)(m∈Z)为偶函数且在区间(0,+∞)上是单调减函数,求函数f(x)
展开
善搞居士
2009-09-28 · TA获得超过9575个赞
知道大有可为答主
回答量:1101
采纳率:0%
帮助的人:0
展开全部
1:
y=x^(m^2-2m-3))(m∈N*)的图象关于y轴对称,且在(0,正无穷)上是减函数:
所以:y=x^(m^2-2m-3)为偶函数;m^2-2m-3为偶数,且<0;
m^2-2m-3<0;解得:-1<m<3;m∈N*;所以m=1;或2(m^2-2m-3=-3;为奇数,舍去);
将m=1;代入
(a+1)^-m/3<(3-2a)^-m/3;
即为:(a+1)^-1/3<(3-2a)^-1/3;
因为函数y=x^-1/3;在(-∞,0)(0,+∞)单调递减;
所以:
(a+1)>(3-2a)>0;解得a>2/3;
或0>(a+1)>(3-2a);无解;
或3-2a>0;a+1<0;解得a<-1;
满足(a+1)^-m/3<(3-2a)^-m/3的a的取值范围是a>2/3或a<-1;
2:
幂函数f(x)=x^(m^2-2m-3)(m∈Z)为偶函数且在区间(0,+∞)上是单调减函数;
所以m^2-2m-3为偶数;且<0;
m^2-2m-3<0;解得-1<m<3;
(m∈Z)所以m=1;(m=0;m=2;m^2-2m-3为奇数,舍去;);
所以f(x)=x^(1^2-2*1-3)=x^(-4);
红钞
2012-06-10 · 超过16用户采纳过TA的回答
知道答主
回答量:147
采纳率:0%
帮助的人:53.5万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式