设椭圆x^2/a^2+y^2/b^2=1(a>b>0)与x轴、y轴的正半轴分别交于点A、B,P(x,y)是椭圆上位于第一象限的

O为坐标原点,求四边形OABP面积的最大值... O为坐标原点,求四边形OABP面积的最大值 展开
百度网友f8158d4
2009-10-03 · TA获得超过4581个赞
知道大有可为答主
回答量:1744
采纳率:100%
帮助的人:1151万
展开全部
化椭圆方程为三角形式:x = a·cosα ,y = b·sinα ,∵P(x ,y)在第一象限 ,∴α∈(0 ,π/2)
S(OABP) = S(△OAP) + S(OBP) = (bx + ay)/2 = (ab/2)·(cosα + sinα)
而cosα + sinα = √2·sin(α + π/4),而α + π/4 ∈(π/4 ,3π/4) ,∴sin(α + π/4)最大值为1 ,∴S(OABP)max = ab·(√2/2) ,此时OP平分∠AOB
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式