圆P与圆O相交于A.B两点,圆P经过圆心O,点C是圆P的优弧AB上任意1点,连接AB,AC ,BC, OC

1376es
2009-10-19 · TA获得超过1154个赞
知道答主
回答量:52
采纳率:100%
帮助的人:46.6万
展开全部
同是天涯沦落人啊......你是要这些答案吗?
(1)指出图中与角ACO相等的一个角;
∠ACO=∠BCO

(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由。
当点在圆O上点D位置时,直线CA与圆O相切
连接OP并延长,交圆O于点D 连AD、OA
因为C1A与圆O相切,所以:OA⊥C'A
即,∠OAD=90°
所以当点在圆O上点D位置时,直线CA与圆O相切

(3)当角ACB=60°时,两圆的半径有怎样的大小关系。说明理由。
已知∠ACB=60°
且,由(1)的结论知,∠ACO=∠BC0
所以,∠ACO=∠BC0=30°
而,∠ACO=∠ADO
所以,∠ADO=30°
又,△ADO为直角三角形
所以,DO=2AO
而,DO=2PO
所以PO=AO
所以圆P与圆O两圆半径相等。
1076510788
2013-03-13 · TA获得超过501个赞
知道答主
回答量:26
采纳率:0%
帮助的人:8.9万
展开全部
解:(1)连接OA,OB.
在⊙O中,∵OA=OB,


OA
=

OB

∴∠ACO=∠BCO;
(2)连接OP,并延长与⊙P交于点D.
若点C在点D位置时,直线CA与⊙O相切
理由:连接AD,OA,则∠DAO=90°
∴OA⊥DA
∴DA与⊙O相切
即点C在点D位置时,直线CA与⊙O相切.
(3)当∠ACB=60°时,两圆半径相等;
理由:作直径OD,连接BD,AD,OA,
∵∠ADB=∠ACB=60°,PO垂直平分AB,


AO
=

BO

∵∠ADO=∠BDO,
∴∠ADO=30°,
∵OD是直径,
∴∠DAO=90°,
∴OA=
1
2
OD,
∴OA=PO,
∴当∠ACB=60°时,两圆半径相等.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式