已知数列an满足1/a1a2+1/a2a3+……1/an-1an=(n-1)/a1an,求证为等差数列 15

 我来答
stormtrooper01
2009-10-10 · TA获得超过3801个赞
知道小有建树答主
回答量:457
采纳率:0%
帮助的人:737万
展开全部
用数学归纳法证明:
1.n=3时,1/(a1a2)+1/(a2a3)=2/(a1a3),即a3+a1=2a2,为等差数列;
2.假定n=k时,{ak}是等差数列,即ak=a1+(k-1)d,其中d=a2-a1
当n=k+1时,
由1/a1a2+1/a2a3+…+1/an-1an=(n-2)/(a1an-1)+1/an-1an=(n-1)/a1an
可得:(k-1)/(aka1)+1/(akak+1)=k/(a1ak+1)
(k-1)ak+1+a1=kak=ka1+k(k-1)d
ak+1=a1+kd
ak+1-ak=d
于是{ak+1}是等差数列
综上:{an}是等差数列.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式