高二数学 椭圆难题急求解答!!!!谢谢谢谢谢!!! 20
1.设椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的离心率e=(√2)/2,点A是椭圆上一点,且点A到椭圆C的两焦点的距离之和为4.⑴求椭圆C...
1.设椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的离心率e=(√2)/2,点A是椭圆上一点,且点A到椭圆C的两焦点的距离之和为4.
⑴求椭圆C的方程; ⑵椭圆上一动点为P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3(x1)-4(y1)的取值范围.
详细过程!谢谢谢谢谢!!!!! 展开
⑴求椭圆C的方程; ⑵椭圆上一动点为P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3(x1)-4(y1)的取值范围.
详细过程!谢谢谢谢谢!!!!! 展开
2个回答
展开全部
(1)
根据椭圆的画法却可知椭圆上任一点到两焦点的距离之和等于2a,即2a=4,a=2
离心率e=c/a=(√2)/2,则c=√2 b^2=a^2-c^2=2 b=√2
椭圆C的方程为 (x^2)/4+(y^2)/2=1
(2)
直线PP1与直线y=2x相互垂直,则直线PP1斜率为-1/2,方程为y-y0=-1/2(x-x0)
P1在直线PP1上,则 y1=y0-1/2(x1-x0)
设直线PP1与直线y=2x交于一点M(xM,yM),M即为线段PP1的中点,yM=2xM。
1/2(y1+y0)=2*1/2(x1+x0)
与上式合解出 x1=4/5 y0-3/5 x0
y1=3/5 y0+4/5 x0
则 3(x1)-4(y1)=-5 x0
P(x0,y0)在椭圆上,x0的取值范围为(-2,2)
3(x1)-4(y1)的取值范围为(-10,10)
根据椭圆的画法却可知椭圆上任一点到两焦点的距离之和等于2a,即2a=4,a=2
离心率e=c/a=(√2)/2,则c=√2 b^2=a^2-c^2=2 b=√2
椭圆C的方程为 (x^2)/4+(y^2)/2=1
(2)
直线PP1与直线y=2x相互垂直,则直线PP1斜率为-1/2,方程为y-y0=-1/2(x-x0)
P1在直线PP1上,则 y1=y0-1/2(x1-x0)
设直线PP1与直线y=2x交于一点M(xM,yM),M即为线段PP1的中点,yM=2xM。
1/2(y1+y0)=2*1/2(x1+x0)
与上式合解出 x1=4/5 y0-3/5 x0
y1=3/5 y0+4/5 x0
则 3(x1)-4(y1)=-5 x0
P(x0,y0)在椭圆上,x0的取值范围为(-2,2)
3(x1)-4(y1)的取值范围为(-10,10)
2009-10-30
展开全部
这也叫难题啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询