如图,在三角形ABC中AB等于BC,BE垂直AC于点E,AD垂直BC于点D,角BAD等于45度,A

如图,在三角形ABC中AB等于BC,BE垂直AC于点E,AD垂直BC于点D,角BAD等于45度,AD与BE交于点F,连接CF。(1)求证:BF等于2AE;(2)若CD等于... 如图,在三角形ABC中AB等于BC,BE垂直AC于点E,AD垂直BC于点D,角BAD等于45度,AD与BE交于点F,连接CF。(1)求证:BF等于2AE;(2)若CD等于根号二,求AD的长。 展开
 我来答
wzhq777
高粉答主

2014-03-22 · 醉心答题,欢迎关注
知道顶级答主
回答量:11.1万
采纳率:95%
帮助的人:2.2亿
展开全部
⑴证明:∵AB=BC,BE⊥AC,
∴AE=CE=1/2AC,∠DBF=∠ACD=90°,
∵AD⊥BC,∴∠BDF=∠ADC=90°,∠DAC+∠ACD=90°,
∴∠DBF=∠DAC,
∵∠ABC=45°,∴ΔABD是等腰直角三角形,∴AD=BD,
∴ΔDBF≌ΔDAC(ASA),
∴BF=AC=2AE。
⑵由全等得:DF=DC=√2,∴CF=√2CD=2,
∵EF⊥AC,AE=CE,
∴AF=CF=2,
∴AD=AF+DF=2+√2。
诗里寻对冬天
2020-06-02
知道答主
回答量:2
采纳率:0%
帮助的人:1178
展开全部
⑴证明:∵AB=BC,BE⊥AC,
∴AE=CE=1/2AC,∠DBF=∠ACD=90°,
∵AD⊥BC,∴∠BDF=∠ADC=90°,∠DAC+∠ACD=90°,
∴∠DBF=∠DAC,
∵∠ABC=45°,∴ΔABD是等腰直角三角形,∴AD=BD,
∴ΔDBF≌ΔDAC(ASA),
∴BF=AC=2AE。
⑵由全等得:DF=DC=√2,∴CF=√2CD=2,
∵EF⊥AC,AE=CE,
∴AF=CF=2,
∴AD=AF+DF=2+√2。谢谢了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
crosspoint交叉点
2018-01-28
知道答主
回答量:2
采纳率:0%
帮助的人:1421
展开全部
⑴证明:∵AB=BC,BE⊥AC,
∴AE=CE=1/2AC,∠DBF=∠ACD=90°,
∵AD⊥BC,∴∠BDF=∠ADC=90°,∠DAC+∠ACD=90°,
∴∠DBF=∠DAC,
∵∠ABC=45°,∴ΔABD是等腰直角三角形,∴AD=BD,
∴ΔDBF≌ΔDAC(ASA),
∴BF=AC=2AE。
⑵由全等得:DF=DC=√2,∴CF=√2CD=2,
∵EF⊥AC,AE=CE,
∴AF=CF=2,
∴AD=AF+DF=2+√2。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式