题如下,请给出证明过程……谢谢
对任意数列【An】,若满足|An-B|≤k|An-1-B|,其中0<k<1,则|An-B|≤k²|An-1-B|≤...≤k^n-1|A1-B|,为什么?...
对任意数列【An】,若满足|An - B|≤k|An-1 - B|,其中0<k<1,则|An - B |≤k²|An-1 - B|≤...≤k^n-1|A1 - B|,为什么?
展开
2个回答
展开全部
解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据题意,得 {x+2y=8 ,2x+3y=14,
解得 {x=4,y=2.
答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工.
根据题意,得12(4a+2n)=240,
2a+n=10,
n=10-2a,
又a,n都是正整数,0<n<10,
所以n=8,6,4,2.
即工厂有4种新工人的招聘方案.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.
根据题意,得
W=2000a+1200n=2000a+1200(10-2a)=12000-400a.
要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.
显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
根据题意,得 {x+2y=8 ,2x+3y=14,
解得 {x=4,y=2.
答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工.
根据题意,得12(4a+2n)=240,
2a+n=10,
n=10-2a,
又a,n都是正整数,0<n<10,
所以n=8,6,4,2.
即工厂有4种新工人的招聘方案.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.
根据题意,得
W=2000a+1200n=2000a+1200(10-2a)=12000-400a.
要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.
显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
追问
答错问题了吧= =
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询