如图,抛物线y=-x2-2x+3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点。
F(-4,-5)或(1,0)。
(1)由抛物线y=-x2-2x+3可知,C(0,3),
令y=0,则0=-x2-2x+3,解得x=-3或x=1,
∴A(-3,0),B(1,0).
(2)由抛物线y=-x2-2x+3可知,对称轴为x=-1,
设M点的横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周长=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,
∴当m=-2时矩形的周长最大.
∵A(-3,0),C(0,3),设直线AC解析式为y=kx+b,
解得k=1,b=3
∴解析式y=x+3,当x=-2时,则E(-2,1),
∴EM=1,AM=1,
∴S=
1
2
?AM?EM=
1
2
.
(3)∵M点的横坐标为-2,抛物线的对称轴为x=-1,
∴N应与原点重合,Q点与C点重合,
∴DQ=DC,
把x=-1代入y=-x2-2x+3,解得y=4,
∴D(-1,4)
∴DQ=DC=
2,
∵FG=2
2DQ,
∴FG=4,
设F(n,-n2-2n+3),
则G(n,n+3),
∵点G在点F的上方,
∴(n+3)-(-n2-2n+3)=4,
解得:n=-4或n=1.
∴F(-4,-5)或(1,0).
相关参数:
(对于向右开口的抛物线y2=2px)
二次函数的图像是一条抛物线
离心率:e=1(恒为定值,为抛物线上一点与准线的距离以及该点与焦点的距离比)
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)
定义域:对于抛物线y2=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x2=2py,定义域为R。
值域:对于抛物线y2=2px,值域为R,对于抛物线x2=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。