函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是(  )A.a>2

函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是()A.a>23B.12<a<32C.a>12D.a<12... 函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是(  )A.a>23B.12<a<32C.a>12D.a<12 展开
 我来答
圣战丶征
2014-12-27 · 超过64用户采纳过TA的回答
知道答主
回答量:110
采纳率:50%
帮助的人:113万
展开全部
解:f(x)=-x2+(2a-1)|x|+1是由函数f(x)=-x2+(2a-1)x+1变化得到,
第一步保留y轴右侧的图象,再作关于y轴对称的图象.
因为定义域被分成四个单调区间,
所以f(x)=-x2+(2a-1)x+1的对称轴在y轴的右侧,使y轴右侧有两个单调区间,对称后有四个单调区间.
所以
2a-1
2
>0,即a>
1
2

故选C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式