△BABC中,D是AB边上的一点,过点D作DE∥BC,交∠ABC的角平分线与点E.(1)如图1,当点E恰好在AC 边上时

△BABC中,D是AB边上的一点,过点D作DE∥BC,交∠ABC的角平分线与点E.(1)如图1,当点E恰好在AC边上时,求证:∠ADE=2∠DEB;(2)如图2,当点D在... △BABC中,D是AB边上的一点,过点D作DE∥BC,交∠ABC的角平分线与点E.(1)如图1,当点E恰好在AC 边上时,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上,其余条件不变,请直接写出∠ADE与∠DEB之间的数量关系. 展开
 我来答
心碎娃娃ZSms4
推荐于2017-09-14 · TA获得超过132个赞
知道答主
回答量:131
采纳率:0%
帮助的人:159万
展开全部
证明:(1)∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵DE∥BC,
∴∠CBE=∠DEB,
在△BDE中,∠ADE=∠ABE+∠DEB=2∠DEB;

(2)同(1)可得∠DEB=∠CBE,
在△BDE中,∠ADE+∠ABE+∠DBE=180°,
所以,∠ADE+2∠DEB=180°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式