(2012?贵阳)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)
(2012?贵阳)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的...
(2012?贵阳)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.
展开
1个回答
展开全部
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∵
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
又BC=DC,
∴BC-BE=DC-DF,即EC=FC
∴CE=CF,
(2)解:连接AC,交EF于G点,
∵△AEF是等边三角形,△ECF是等腰直角三角形,
∴AC⊥EF,
在Rt△AGE中,EG=sin30°AE=
×2=1,
∴EC=
,
设BE=x,则AB=x+
,
在Rt△ABE中,AB2+BE2=AE2,即(x+
)2+x2=4,
解得x=
,
∴AB=
+
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∵
|
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
又BC=DC,
∴BC-BE=DC-DF,即EC=FC
∴CE=CF,
(2)解:连接AC,交EF于G点,
∵△AEF是等边三角形,△ECF是等腰直角三角形,
∴AC⊥EF,
在Rt△AGE中,EG=sin30°AE=
1 |
2 |
∴EC=
2 |
设BE=x,则AB=x+
2 |
在Rt△ABE中,AB2+BE2=AE2,即(x+
2 |
解得x=
-
| ||||
2 |
∴AB=
-
| ||||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|