(2012?佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点
(2012?佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延...
(2012?佳木斯)如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE=5:3;⑤S△EPM=18S梯形ABCD,正确的个数有( )A.5个B.4个C.3个D.2个
展开
展开全部
连接DF,AC,EF,如图所示:
∵E、F分别为AB、BC的中点,且AB=BC,
∴AE=EB=BF=FC,
在△ABF和△CBE中,
,
∴△ABF≌△CBE(SAS),
∴∠BAF=∠BCE,AF=CE,
在△AME和△CMF中,
,
∴△AME≌△CMF(AAS),
∴EM=FM,
在△BEM和△BFM中,
,
∴△BEM≌△BFM(SSS),
∴∠ABN=∠CBN,选项①正确;
∵AE=AD,∠EAD=90°,
∴△AED为等腰直角三角形,
∴∠AED=45°,
∵∠ABC=90°,
∴∠ABN=∠CBN=45°,
∴∠AED=∠ABN=45°,
∴ED∥BN,选项②正确;
∵AB=BC=2AD,且BC=2FC,
∴AD=FC,又AD∥FC,
∴四边形AFCD为平行四边形,
∴AF=DC,又AF=CE,
∴DC=EC,
则△CED为等腰三角形,选项③正确;
∵EF为△ABC的中位线,
∴EF∥AC,且EF=
AC,
∴∠MEF=∠MCA,∠EFM=∠MAC,
∴△EFM∽△CAM,
∴EM:MC=EF:AC=1:2,
设EM=x,则有MC=2x,EC=EM+MC=3x,
设EB=y,则有BC=2y,
在Rt△EBC中,根据勾股定理得:EC=
=
y,
∴3x=
y,即x:y=
:3,
∴EM:BE=
:3,选项④正确;
∵E为AB的中点,EP∥BM,
∴P为AM的中点,
∴S△AEP=S△EPM=
S△AEM,
又S△AEM=S△BEM,且S△BEM=S△BFM,
∴S△AEM=S△BEM=S△BFM=
S△ABF,
∵四边形ABFD为矩形,
∴S△ABF=S△ADF,又S△ADF=S△DFC,
∴S△ABF=S△ADF=S△DFC=
S梯形ABCD,
∴S△EPM=
S梯形ABCD,选项⑤错误.
则正确的个数有4个.
故选B
∵E、F分别为AB、BC的中点,且AB=BC,
∴AE=EB=BF=FC,
在△ABF和△CBE中,
|
∴△ABF≌△CBE(SAS),
∴∠BAF=∠BCE,AF=CE,
在△AME和△CMF中,
|
∴△AME≌△CMF(AAS),
∴EM=FM,
在△BEM和△BFM中,
|
∴△BEM≌△BFM(SSS),
∴∠ABN=∠CBN,选项①正确;
∵AE=AD,∠EAD=90°,
∴△AED为等腰直角三角形,
∴∠AED=45°,
∵∠ABC=90°,
∴∠ABN=∠CBN=45°,
∴∠AED=∠ABN=45°,
∴ED∥BN,选项②正确;
∵AB=BC=2AD,且BC=2FC,
∴AD=FC,又AD∥FC,
∴四边形AFCD为平行四边形,
∴AF=DC,又AF=CE,
∴DC=EC,
则△CED为等腰三角形,选项③正确;
∵EF为△ABC的中位线,
∴EF∥AC,且EF=
1 |
2 |
∴∠MEF=∠MCA,∠EFM=∠MAC,
∴△EFM∽△CAM,
∴EM:MC=EF:AC=1:2,
设EM=x,则有MC=2x,EC=EM+MC=3x,
设EB=y,则有BC=2y,
在Rt△EBC中,根据勾股定理得:EC=
EB2+BC2 |
5 |
∴3x=
5 |
5 |
∴EM:BE=
5 |
∵E为AB的中点,EP∥BM,
∴P为AM的中点,
∴S△AEP=S△EPM=
1 |
2 |
又S△AEM=S△BEM,且S△BEM=S△BFM,
∴S△AEM=S△BEM=S△BFM=
1 |
3 |
∵四边形ABFD为矩形,
∴S△ABF=S△ADF,又S△ADF=S△DFC,
∴S△ABF=S△ADF=S△DFC=
1 |
3 |
∴S△EPM=
1 |
18 |
则正确的个数有4个.
故选B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询