设关于x的函数f(x)=4x-2x+1-b(b∈R),(1)若函数有零点,求实数b的取值范围;(2)当函数有零点时,
设关于x的函数f(x)=4x-2x+1-b(b∈R),(1)若函数有零点,求实数b的取值范围;(2)当函数有零点时,讨论零点的个数,并求出函数的零点....
设关于x的函数f(x)=4x-2x+1-b(b∈R),(1)若函数有零点,求实数b的取值范围;(2)当函数有零点时,讨论零点的个数,并求出函数的零点.
展开
1个回答
展开全部
(1)原函数零点即方程)=4x-2x+1-b=0 的根.
化简方程为b=4x-2x+1=22x-2?2x=(2x-1)2-1≥-1,
故当b的范围为[-1,+∞)时函数存在零点.
(2)①当b=-1 时,2x=1,∴方程有唯一解x=0.
②当 0>b>-1 时,∵(2x-1)2=1+b>0,可得 2x=1+
,或2x=1-
,
解得 x=log2(1+
),或x=log2(1?
),故此时方程有2个解.…(9分)
③当b≥0时,∵(2x-1)2=1+b>1,可得 2x=1+
,或2x=1-
(舍去),
解得 x=log2(1+
),故此时方程有唯一解.
④当b<-1时,∵(2x-1)2=1+b<0,2x 无解,原方程无解.
综上可得,1)当-1<b<0时原方程有两解:x=log2(1+
化简方程为b=4x-2x+1=22x-2?2x=(2x-1)2-1≥-1,
故当b的范围为[-1,+∞)时函数存在零点.
(2)①当b=-1 时,2x=1,∴方程有唯一解x=0.
②当 0>b>-1 时,∵(2x-1)2=1+b>0,可得 2x=1+
1+b |
1+b |
解得 x=log2(1+
1+b |
1+b |
③当b≥0时,∵(2x-1)2=1+b>1,可得 2x=1+
1+b |
1+b |
解得 x=log2(1+
1+b |
④当b<-1时,∵(2x-1)2=1+b<0,2x 无解,原方程无解.
综上可得,1)当-1<b<0时原方程有两解:x=log2(1+
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|