(2010?高淳县一模)如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证
(2010?高淳县一模)如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)(A类)连接CE,当BE平...
(2010?高淳县一模)如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)(A类)连接CE,当BE平分∠ABC时,求证:CE⊥BF;(B类)连接CE,当CE平分∠BCD时,求证:CE⊥BF.
展开
展开全部
解答:(1)证明:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD=∠FDE,
又∵点E是AD的中点,
∴AE=DE.
在△ABE与△DFE中,
∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,
∴△ABE≌△DFE.
(2)A类:
证明:∵△ABE≌△DFE,
∴∠ABE=∠BFC,BE=EF,
又∵BF平分∠ABC,
∴∠ABE=∠FBC,
∴∠FBC=∠BFC,
∴△BCF是等腰三角形,
∴CE⊥BF;
B类:
证明:∵△ABE≌△DFE,
∴DF=AB,
又∵CD=AB,
∴CF=2CD,
∵CE平分∠BCD,
∴∠BCE=∠FCE.
又∵AD∥BC,
∴∠BCE=∠DEC,
∴∠FCE=∠DEC,
∴DE=CD,
又∵AE=DE,
∴BC=2CD,
∴CF=BC,
又∵CE平分∠BCD,
∴CE⊥BF.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD=∠FDE,
又∵点E是AD的中点,
∴AE=DE.
在△ABE与△DFE中,
∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,
∴△ABE≌△DFE.
(2)A类:
证明:∵△ABE≌△DFE,
∴∠ABE=∠BFC,BE=EF,
又∵BF平分∠ABC,
∴∠ABE=∠FBC,
∴∠FBC=∠BFC,
∴△BCF是等腰三角形,
∴CE⊥BF;
B类:
证明:∵△ABE≌△DFE,
∴DF=AB,
又∵CD=AB,
∴CF=2CD,
∵CE平分∠BCD,
∴∠BCE=∠FCE.
又∵AD∥BC,
∴∠BCE=∠DEC,
∴∠FCE=∠DEC,
∴DE=CD,
又∵AE=DE,
∴BC=2CD,
∴CF=BC,
又∵CE平分∠BCD,
∴CE⊥BF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询